
1

Operator Overloading

User-defined Operator Overloading

"operator" Functions

To overload an operator, you use a special function form called an operator function, in the form

of operatorΔ(), where Δ denotes the operator to be overloaded:

return-type operatorΔ(parameter-list)

For example, operator+() overloads the + operator; operator<<() overloads the << operator. Take

note that Δ must be an existing C++ operator. You cannot create you own operator.

 Example: Overloading '+' Operator for the Point Class as Member Function

In this example, we shall overload the '+' operator in the Point class to support addition of

two Point objects. In other words, we can write p3 = p1+p2, where p1, p2 and p3 are Point objects,

similar to the usual arithmetic operation. We shall construct a new Point instance p3 for the sum,

without changing the p1 and p2 instances.

/* The Point class Header file (Point.h) */

#ifndef POINT_H

#define POINT_H

class Point {

private:

 int x, y; // Private data members

public:

 Point(int x = 0, int y = 0); // Constructor

 int getX() const; // Getters

 int getY() const;

 void setX(int x); // Setters

 void setY(int y);

 void print() const;

 const Point operator+(const Point & rhs) const;

 // Overload '+' operator as member function of the class

};

#endif

Program Notes:

2

 We overload the + operator via a member function operator+(), which shall add this instance

(left operand) with the rhs operand, construct a new instance containing the sum and and return

it by value. We cannot return by reference a local variable created inside the function, as the local

variable would be destroyed when the function exits.

 The rhs operand is passed by reference for performance.

 The member function is declared const, which cannot modify data members.

 The return value is declared const, so as to prevent it from being used as lvalue. For example, it

prevents writing (p1+p2) = p3, which is meaningless and could be due to misspelling (p1+p2)

== p3.

/* The Point class Implementation file (Point.cpp) */

#include "Point.h"

#include <iostream>

using namespace std;

// Constructor - The default values are specified in the declaration

Point::Point(int x, int y) : x(x), y(y) { } // Using initializer list

// Getters

int Point::getX() const { return x; }

int Point::getY() const { return y; }

// Setters

void Point::setX(int x) { this->x = x; }

void Point::setY(int y) { this->y = y; }

// Public Functions

void Point::print() const {

 cout << "(" << x << "," << y << ")" << endl;

}

// Member function overloading '+' operator

const Point Point::operator+(const Point & rhs) const {

 return Point(x + rhs.x, y + rhs.y);

}

Program Notes:

 The function allocates a new Point object with the sums of x's and y's, and returns this object

by const value.

#include "Point.h"

#include <iostream>

using namespace std;

int main() {

3

 Point p1(1, 2), p2(4, 5);

 // Use overloaded operator +

 Point p3 = p1 + p2;

 p1.print(); // (1,2)

 p2.print(); // (4,5)

 p3.print(); // (5,7)

 // Invoke via usual dot syntax, same as p1+p2

 Point p4 = p1.operator+(p2);

 p4.print(); // (5,7)

 // Chaining

 Point p5 = p1 + p2 + p3 + p4;

 p5.print(); // (15,21)

}

Program Notes:

 You can invoke the overloaded operator via p1+p2, which will be translated into the dot

operation p1.operator+(p2).

 The + operator supports chaining (cascading) operations, as p1+p2 returns a Point object.

Restrictions on Operator Overloading

 The overloaded operator must be an existing and valid operator. You cannot create your own

operator such as ⊕.

 Certain C++ operators cannot be overloaded, such as sizeof, dot (. and .*), scope resolution

(::) and conditional (?:).

 The overloaded operator must have at least one operands of the user-defined types. You cannot

overload an operator working on fundamental types. That is, you can't overload the '+' operator

for two ints (fundamental type) to perform subtraction.

 You cannot change the syntax rules (such as associativity, precedence and number of arguments)

of the overloaded operator.

Overloading Operator via "friend" non-member

function

Why can't we always use Member Function for Operator

Overloading?

The member function operatorΔ() can only be invoked from an object via the dot operator,

e.g., p1.operatorΔ(p2), which is equivalent to p1 Δ p2. Clearly the left operand p1 should be an object

4

of that particular class. Suppose that we want to overload a binary operator such as * to multiply the

object p1 with an int literal, p1*5 can be translated into p1.operator*(5), but 5*p1 cannot be

represented using member function. One way to deal with this problem is only allow user to

write p1*5 but not 5*p1, which is not user friendly and break the rule of commutativity. Another way

is to use a non-member function, which does not invoke through an object and dot operator, but

through the arguments provided. For example, 5*p1 could be translated to operator+(5, p1).

In brief, you cannot use member function to overload an operator if the left operand is not an object

of that particular class.

"friend" Functions

A regular non-member function cannot directly access the private data of the objects given in its

arguments. A special type of function, called friends, are allowed to access the private data.

A "friend" function of a class, marked by the keyword friend, is a function defined outside the class,

yet its argument of that class has unrestricted access to all the class members

(private, protected and public data members and member functions). Friend functions can enhance

the performance, as they eliminate the need of calling public member functions to access the private

data members.

 Example: Overloading << and >> Operators of Point class using

non-member friend Functions

In this example, we shall overload << and >> operators to support stream insertion and extraction

of Point objects, i.e., cout << aPoint, and cin >> aPoint. Since the left operand is not

a Point object (cout is an ostream object and cin is an istream object), we cannot use member

function, but need to use non-member function for operator overloading. We shall make these

functions friends of the Point class, to allow them to access the private data members directly for

enhanced performance.

/* The Point class Header file (Point.h) */

#ifndef POINT_H

#define POINT_H

#include <iostream>

// Class Declaration

class Point {

private:

 int x, y;

public:

 Point(int x = 0, int y = 0);

 int getX() const; // Getters

5

 int getY() const;

 void setX(int x); // Setters

 void setY(int y);

 friend std::ostream & operator<<(std::ostream & out, const Point & point);

 friend std::istream & operator>>(std::istream & in, Point & point);

};

#endif

Program Notes:

 Friends are neither public or private, and can be listed anywhere within the class declaration.

 The cout and cin need to be passed into the function by reference, so that the function accesses

the cout and cin directly (instead of a clone copy by value).

 We return the cin and cout passed into the function by reference too, so as to support cascading

operations. For example, cout << p1 << endl will be interpreted as (cout << p1) << endl.

 In <<, the reference parameter Point is declared as const. Hence, the function cannot modify

the Point object. On the other hand, in >>, the Point reference is non-const, as it will be modified

to keep the input.

 We use fully-qualified name std::istream instead of placing a "using namespace std;"

statement in the header. It is because this header could be included in many files, which would

include the using statement too and may not be desirable.

/* The Point class Implementation file (Point.cpp) */

#include <iostream>

#include "Point.h"

using namespace std;

// Constructor - The default values are specified in the declaration

Point::Point(int x, int y) : x(x), y(y) { } // using member initializer list

// Getters

int Point::getX() const { return x; }

int Point::getY() const { return y; }

// Setters

void Point::setX(int x) { this->x = x; }

void Point::setY(int y) { this->y = y; }

ostream & operator<<(ostream & out, const Point & point) {

 out << "(" << point.x << "," << point.y << ")"; // access private data

 return out;

}

6

istream & operator>>(istream & in, Point & point) {

 cout << "Enter x and y coord: ";

 in >> point.x >> point.y; // access private data

 return in;

}

Program Notes:

 The function definition does not require the keyword friend, and the ClassName:: scope

resolution qualifier, as it does not belong to the class.

 The operator<<() function is declared as a friend of Point class. Hence, it can access the private

data members x and y of its argument Point directly. operator<<() function is NOT a friend

of ostream class, as there is no need to access the private member of ostream.

 Instead of accessing private data member x and y directly, you could use public member

function getX() and getY(). In this case, there is no need to declare operator<<() as a friend of

the Point class. You could simply declare a regular function prototype in the header.

// Function prototype

ostream & operator<<(ostream & out, const Point & point);

// Function definition

ostream & operator<<(ostream & out, const Point & point) {

 out << "(" << point.getX() << "," << point.getY() << ")";

 return out;

}

Using friend is recommended, as it enhances performance. Furthermore, the overloaded operator

becomes part of the extended public interface of the class, which helps in ease-of-use and ease-of-

maintenance.

#include <iostream>

#include "Point.h"

using namespace std;

int main() {

 Point p1(1, 2), p2;

 // Using overloaded operator <<

 cout << p1 << endl; // support cascading

 operator<<(cout, p1); // same as cout << p1

 cout << endl;

 // Using overloaded operator >>

 cin >> p1;

7

 cout << p1 << endl;

 operator>>(cin, p1); // same as cin >> p1

 cout << p1 << endl;

 cin >> p1 >> p2; // support cascading

 cout << p1 << endl;

 cout << p2 << endl;

}

The overloaded >> and << can also be used for file input/output, as the file IO

stream ifstream/ofstream (in fstream header) is a subclass of istream/ostream. For example,

#include <fstream>

#include "Point.h"

using namespace std;

int main() {

 Point p1(1, 2);

 ofstream fout("out.txt");

 fout << p1 << endl;

 ifstream fin("in.txt"); // contains "3 4"

 fin >> p1;

 cout << p1 << endl;

}

Overloading Binary Operators
All C++ operators are either binary (e.g., x + y) or unary (e.g. !x, -x), with the exception

of tenary conditional operator (? :) which cannot be overloaded.

Suppose that we wish to overload the binary operator == to compare two Point objects. We could do

it as a member function or non-member function.

Suppose that we wish to overload the binary operator == to compare two Point objects. We could do

it as a member function or non-member function.

1. To overload as a member function, the declaration is as follows:

class Point {

public:

 bool operator==(const Point & rhs) const; // p1.operator==(p2)

};

The compiler translates "p1 == p2" to "p1.operator==(p2)", as a member function call of

object p1, with argument p2.

8

Member function can only be used if the left operand is an object of that particular class.

2. To overload as a non-member function, which is often declared as a friend to access the private

data for enhanced performance, the declaration is as follows:

class Point {

 friend bool operator==(const Point & lhs, const Point & rhs); // operator==(p1,p2)

};

The compiler translates the expression "p1 == p2" to "operator==(p1, p2)".

Overloading Unary Operators
Most of the unary operators are prefix operators, e.g., !x, -x. Hence, prefix is the norm for unary

operators. However, unary increment and decrement come in two forms: prefix (++x, --x) and postfix

(x++, x--). We to a mechanism to differentiate the two forms.

Unary Prefix Operator

Example of unary prefix operators are !x, -x, ++x and --x. You could do it as a non-member function

as well as member function. For example, to overload the prefix increment operator ++:

1. To overload as a non-member friend function:

class Point {

 friend Point & operator++(Point & point);

};

The compiler translates "++p" to "operator++(p)".

2. To overload as a member function:

class Point {

public:

 Point & operator++(); // this Point

};

The compiler translates "++p" to "p.operator++()".

You can use either member function or non-member friend function to overload unary operators, as

their only operand shall be an object of that class.

9

Unary Postfix Operator

The unary increment and decrement operators come in two forms: prefix (++x, --x) and postfix (x++, x-

-). Overloading postfix operators (such as x++, x--) present a challenge. It ought to be differentiated

from the prefix operator (++x, --x). A "dummy" argument is therefore introduced to indicate postfix

operation as shown below. Take note that postfix ++ shall save the old value, perform the increment,

and then return the saved value by value.

1. To overload as non-member friend function:

class Point {

 friend const Point operator++(Point & point, int dummy);

};

The compiler translates "pt++" to "operator++(pt, 0)". The int argument is strictly a dummy

value to differentiate prefix from postfix operation.

2. To overload as a member function:

class Point {

public:

 const Point operator++(int dummy); // this Point

};

The compiler translates "pt++" to "pt.operator++(0)".

Example: Overloading Prefix and Postfix ++ for the Counter Class

/* The Counter class Header file (Counter.h) */

#ifndef COUNTER_H

#define COUNTER_H

#include <iostream>

class Counter {

private:

 int count;

public:

 Counter(int count = 0); // Constructor

 int getCount() const; // Getters

 void setCount(int count); // Setters

 Counter & operator++(); // ++prefix

 const Counter operator++(int dummy); // postfix++

 friend std::ostream & operator<<(std::ostream & out, const Counter & counter);

};

10

#endif

Program Notes:

 The prefix function returns a reference to this instance, to support chaining (or cascading),

e.g., ++++c as ++(++c). However, the return reference can be used as lvalue with unexpected

operations (e.g., ++c = 8).

 The postfix function returns a const object by value. A const value cannot be used as lvalue. This

prevents chaining such as c++++. Although it would be interpreted as (c++)++.

However, (c++) does not return this object, but an temporary object. The subsequent ++ works

on the temporary object.

 Both prefix and postfix functions are non-const, as they modify the data member count.

/* The Counter class Implementation file (Counter.cpp) */

#include "Counter.h"

#include <iostream>

using namespace std;

// Constructor - The default values are specified in the declaration

Counter::Counter(int c) : count(c) { } // using member initializer list

// Getters

int Counter::getCount() const { return count; }

// Setters

void Counter::setCount(int c) { count = c; }

// ++prefix, return reference of this

Counter & Counter::operator++() {

 ++count;

 return *this;

}

// postfix++, return old value by value

const Counter Counter::operator++(int dummy) {

 Counter old(*this);

 ++count;

 return old;

}

// Overload stream insertion << operator

ostream & operator<<(ostream & out, const Counter & counter) {

 out << counter.count;

 return out;

}

11

Program Notes:

 The prefix function increments the count, and returns this object by reference.

 The postfix function saves the old value (by constructing a new instance with this object via the

copy constructor), increments the count, and return the saved object by value.

 Clearly, postfix operation on object is less efficient than the prefix operation, as it create a

temporary object. If there is no subsequent operation that relies on the output of prefix/postfix

operation, use prefix operation.

#include "Counter.h"

#include <iostream>

using namespace std;

int main() {

 Counter c1;

 cout << c1 << endl; // 0

 cout << ++c1 << endl; // 1

 cout << c1 << endl; // 1

 cout << c1++ << endl; // 1

 cout << c1 << endl; // 2

 }

Program Notes:

 Take note of the difference in cout << c1++ and cout << ++c1. Both prefix and postfix operators

work as expected.

Example: Putting them together in Point Class
This example overload binary operator << and >> as non-member functions for stream insertion and

stream extraction. It also overload unary ++ (postfix and prefix) and binary += as member function;

and +, += operators.

Point.h

1

2

3

4

5

6

7

8

9

10

11

12

/* The Point class Header file (Point.h) */

#ifndef POINT_H

#define POINT_H

#include <iostream>

class Point {

private:

 int x, y;

public:

 explicit Point(int x = 0, int y = 0);

 int getX() const;

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

 int getY() const;

 void setX(int x);

 void setY(int y);

 Point & operator++(); // ++prefix

 const Point operator++(int dummy); // postfix++

 const Point operator+(const Point & rhs) const; // Point + Point

 const Point operator+(int value) const; // Point + int

 Point & operator+=(int value); // Point += int

 Point & operator+=(const Point & rhs); // Point += Point

 friend std::ostream & operator<<(std::ostream & out, const Point & point); // out << point

 friend std::istream & operator>>(std::istream & in, Point & point); // in >> point

 friend const Point operator+(int value, const Point & rhs); // int + Point

};

#endif

Point.cpp

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

/* The Point class Implementation file (Point.cpp) */

#include "Point.h"

#include <iostream>

using namespace std;

// Constructor - The default values are specified in the declaration

Point::Point(int x, int y) : x(x), y(y) { }

// Getters

int Point::getX() const { return x; }

int Point::getY() const { return y; }

// Setters

void Point::setX(int x) { this->x = x; }

void Point::setY(int y) { this->y = y; }

// Overload ++Prefix, increase x, y by 1

Point & Point::operator++() {

 ++x;

 ++y;

 return *this;

}

// Overload Postfix++, increase x, y by 1

const Point Point::operator++(int dummy) {

 Point old(*this);

 ++x;

13

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

 ++y;

 return old;

}

// Overload Point + int. Return a new Point by value

const Point Point::operator+(int value) const {

 return Point(x + value, y + value);

}

// Overload Point + Point. Return a new Point by value

const Point Point::operator+(const Point & rhs) const {

 return Point(x + rhs.x, y + rhs.y);

}

// Overload Point += int. Increase x, y by value

Point & Point::operator+=(int value) {

 x += value;

 y += value;

 return *this;

}

// Overload Point += Point. Increase x, y by rhs

Point & Point::operator+=(const Point & rhs) {

 x += rhs.x;

 y += rhs.y;

 return *this;

}

// Overload << stream insertion operator

ostream & operator<<(ostream & out, const Point & point) {

 out << "(" << point.x << "," << point.y << ")";

 return out;

}

// Overload >> stream extraction operator

istream & operator>>(istream & in, Point & point) {

 cout << "Enter x and y coord: ";

 in >> point.x >> point.y;

 return in;

}

// Overload int + Point. Return a new point

const Point operator+(int value, const Point & rhs) {

 return rhs + value; // use member function defined above

}

14

TestPoint.cpp

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

#include <iostream>

#include "Point.h"

using namespace std;

int main() {

 Point p1(1, 2);

 cout << p1 << endl; // (1,2)

 Point p2(3,4);

 cout << p1 + p2 << endl; // (4,6)

 cout << p1 + 10 << endl; // (11,12)

 cout << 20 + p1 << endl; // (21,22)

 cout << 10 + p1 + 20 + p1 << endl; // (32,34)

 p1 += p2;

 cout << p1 << endl; // (4,6)

 p1 += 3;

 cout << p1 << endl; // (7,9)

 Point p3; // (0,0)

 cout << p3++ << endl; // (0,0)

 cout << p3 << endl; // (1,1)

 cout << ++p3 << endl; // (2,2)

}

Dynamic Memory Allocation in Object

If you dynamically allocate memory in the constructor, you need to provide your own destructor, copy

constructor and assignment operator to manage the dynamically allocated memory. The defaults

provided by the C++ compiler do not work for dynamic memory.

Example: MyDynamicArray

/*

 * The MyDynamicArray class header (MyDynamicArray.h)

 * A dynamic array of double elements

 */

#ifndef MY_DYNAMIC_ARRAY_H

#define MY_DYNAMIC_ARRAY_H

#include <iostream>

15

class MyDynamicArray {

private:

 int size_; // size of array

 double * ptr; // pointer to the elements

public:

 explicit MyDynamicArray (int n = 8); // Default constructor

 explicit MyDynamicArray (const MyDynamicArray & a); // Copy constructor

 MyDynamicArray (const double a[], int n); // Construct from double[]

 ~MyDynamicArray(); // Destructor

 const MyDynamicArray & operator= (const MyDynamicArray & rhs); // Assignment a1 = a2

 bool operator== (const MyDynamicArray & rhs) const; // a1 == a2

 bool operator!= (const MyDynamicArray & rhs) const; // a1 != a2

 double operator[] (int index) const; // a[i]

 double & operator[] (int index); // a[i] = x

 int size() const { return size_; } // return size of array

 // friends

 friend std::ostream & operator<< (std::ostream & out, const MyDynamicArray & a); // out << a

 friend std::istream & operator>> (std::istream & in, MyDynamicArray & a); // in >> a

};

#endif

Program Notes:

 In C++, the you cannot use the same name for a data member and a member function. As I would

like to have a public function called size(), which is consistent with the C++ STL, I named the

data member size_ with a trailing underscore, following C++'s best practices. Take note that

leading underscore(s) are used by C++ compiler for its internal variables (e.g., _xxx for data

members and __xxx for local variables).

 As we will be dynamically allocating memory in the constructor, we provide our own version of

destructor, copy constructor and assignment operator to manage the dynamically allocated

memory. The defaults provided by the C++ compiler do not work on dynamic memory.

 We provide 3 constructors: a default constructor with an optional size, a copy constructor to

construct an instance by copying another instance, and a construct to construct an instance by

copying from a regular array.

 We provide 2 version of indexing operators: one for read operation (e.g., a[i]) and another

capable of write operation (e.g., a[i] = x). The read version is declared as a const member

function; whereas the write version return a reference to the element, which can be used

as lvalue for assignment.

16

/* The MyDynamicArray class implementation (MyDynamicArray.cpp) */

#include <stdexcept>

#include "MyDynamicArray.h"

// Default constructor

MyDynamicArray::MyDynamicArray (int n) {

 if (n <= 0) {

 throw std::invalid_argument("error: size must be greater then zero");

 }

 // Dynamic allocate memory for n elements

 size_ = n;

 ptr = new double[size_];

 for (int i = 0; i < size_; ++i) {

 ptr[i] = 0.0; // init all elements to zero

 }

}

// Override the copy constructor to handle dynamic memory

MyDynamicArray::MyDynamicArray (const MyDynamicArray & a) {

 // Dynamic allocate memory for a.size_ elements and copy

 size_ = a.size_;

 ptr = new double[size_];

 for (int i = 0; i < size_; ++i) {

 ptr[i] = a.ptr[i]; // copy each element

 }

}

// Construct via a built-in double[]

MyDynamicArray::MyDynamicArray (const double a[], int n) {

 // Dynamic allocate memory for a.size_ elements and copy

 size_ = n;

 ptr = new double[size_];

 for (int i = 0; i < size_; ++i) {

 ptr[i] = a[i]; // copy each element

 }

}

// Override the default destructor to handle dynamic memory

MyDynamicArray::~MyDynamicArray() {

 delete[] ptr; // free dynamically allocated memory

}

// Override the default assignment operator to handle dynamic memory

17

const MyDynamicArray & MyDynamicArray::operator= (const MyDynamicArray & rhs)

{

 if (this != &rhs) { // no self assignment

 if (size_ != rhs.size_) {

 // reallocate memory for the array

 delete [] ptr;

 size_ = rhs.size_;

 ptr = new double[size_];

 }

 // Copy elements

 for (int i = 0; i < size_; ++i) {

 ptr[i] = rhs.ptr[i];

 }

 }

 return *this;

}

// Overload comparison operator a1 == a2

bool MyDynamicArray::operator== (const MyDynamicArray & rhs) const {

 if (size_ != rhs.size_) return false;

 for (int i = 0; i < size_; ++i) {

 if (ptr[i] != rhs.ptr[i]) return false;

 }

 return true;

}

// Overload comparison operator a1 != a2

bool MyDynamicArray::operator!= (const MyDynamicArray & rhs) const {

 return !(*this == rhs);

}

// Indexing operator - Read

double MyDynamicArray::operator[] (int index) const {

 if (index < 0 || index >= size_) {

 throw std::out_of_range("error: index out of range");

 }

 return ptr[index];

}

// Indexing operator - Writable a[i] = x

double & MyDynamicArray::operator[] (int index) {

 if (index < 0 || index >= size_) {

 throw std::out_of_range("error: index out of range");

 }

18

 return ptr[index];

}

// Overload stream insertion operator out << a (as friend)

std::ostream & operator<< (std::ostream & out, const MyDynamicArray & a) {

 for (int i = 0; i < a.size_; ++i) {

 out << a.ptr[i] << ' ';

 }

 return out;

}

// Overload stream extraction operator in >> a (as friend)

std::istream & operator>> (std::istream & in, MyDynamicArray & a) {

 for (int i = 0; i < a.size_; ++i) {

 in >> a.ptr[i];

 }

 return in;

}

Program Notes:

 Constructor: [TODO]

 Copy Constructor:

 Assignment Operator:

 Indexing Operator:

/* Test Driver for MyDynamicArray class (TestMyDynamicArray.cpp) */

#include <iostream>

#include <iomanip>

#include "MyDynamicArray.h"

int main() {

 std::cout << std::fixed << std::setprecision(1) << std::boolalpha;

 MyDynamicArray a1(5);

 std::cout << a1 << std::endl; // 0.0 0.0 0.0 0.0 0.0

 std::cout << a1.size() << std::endl; // 5

 double d[3] = {1.1, 2.2, 3.3};

 MyDynamicArray a2(d, 3);

 std::cout << a2 << std::endl; // 1.1 2.2 3.3

 MyDynamicArray a3(a2); // Copy constructor

 std::cout << a3 << std::endl; // 1.1 2.2 3.3

19

 a1[2] = 8.8;

 std::cout << a1[2] << std::endl; // 8.8

// std::cout << a1[22] << std::endl; // error: out_of_range

 a3 = a1;

 std::cout << a3 << std::endl; // 0.0 0.0 8.8 0.0 0.0

 std::cout << (a1 == a3) << std::endl; // true

 std::cout << (a1 == a2) << std::endl; // false

 const int SIZE = 3;

 MyDynamicArray a4(SIZE);

 std::cout << "Enter " << SIZE << " elements: ";

 std::cin >> a4;

 if (std::cin.good()) {

 std::cout << a4 << std::endl;

 } else {

 std::cerr << "Invalid input" << std::endl;

 }

 return 0;

}

